Skip to main content

Modelling Spatial Patterns of Urban Growth in Pune Metropolitan Region, India

  • Chapter
  • First Online:
Applications and Challenges of Geospatial Technology

Abstract

Explaining urban growth patterns is a fundamental need to understand the recent rapid urbanization globally. This study identifies geographic features explaining the spatial patterns of urban land expansion (ULE) in the rapidly urbanizing Pune metropolitan region (India). ULE maps were derived from Landsat Thematic Mapper and Operational Land Imager images using support vector machine (SVM) classification. Relation between geographic features and spatial patterns of ULE was analyzed using statistical modelling including ordinary least squares (OLS) regression, spatial lag model (SLM), spatial error model (SEM), and geographically weighted regression (GWR). SEM specification best modeled ULE patterns. High density of existing urban areas is identified to negatively affect ULE, suggesting dominant dispersed urban growth. In addition, proximity to special economic zones and transportation infrastructure explains multicentric growth in the region. GWR model was identified inappropriate due to the presence of high local collinearity. Models accounting for spatial dependencies are recommended while studying ULE patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-sharif AAA, Pradhan B (2015) A novel approach for predicting the spatial patterns of urban expansion by combining the chi-squared automatic integration detection decision tree, Markov chain and cellular automata models in GIS. Geocarto Int 30:858–881

    Article  Google Scholar 

  • Angel S, Sheppard S, Civco DL, Buckley R, Chabaeva A, Gitlin L, Kraley A, Parent J, Perlin M. (2005 The dynamics of global urban expansion [Internet]. [place unknown]: Citeseer; [cited 2016 Jul 26]. Available from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.309.2715&rep=rep1&type=pdf

  • Anselin L (1988) Spatial econometrics: methods and models. Dordrecht. Kluwer Academic Publishers, Boston

    Book  Google Scholar 

  • Anselin L, Griffith DA (1988) Do spatial effects really matter in regression analysis? Pap Reg Sci 65:11–34

    Article  Google Scholar 

  • Census of India (2011 Census of India, 2011. India Provisional Popul Totals Pap. 1

    Google Scholar 

  • Cheng J, Masser I (2003) Urban growth pattern modeling: a case study of Wuhan city, PR China. Landsc Urban Plan 62:199–217

    Article  Google Scholar 

  • Clark TN, Lloyd R, Wong KK, Jain P (2002) Amenities drive urban growth. J Urban Aff 24:493–515

    Article  Google Scholar 

  • Concepción ED, Moretti M, Altermatt F, Nobis MP, Obrist MK (2015) Impacts of urbanisation on biodiversity: the role of species mobility, degree of specialisation and spatial scale. Oikos 124:1571–1582

    Article  Google Scholar 

  • Dimitriadou E, Hornik K, Leisch F, Meyer D, Weingessel A, Leisch MF (2006) The e1071 package. Misc Funct Dep Stat E1071 TU Wien [Internet]. [cited 2016 Jul 26]. Available from: http://ftp.auckland.ac.nz/software/CRAN/doc/packages/e1071.pdf

  • Farooq S, Ahmad S (2008) Urban sprawl development around Aligarh city: a study aided by satellite remote sensing and GIS. J Indian Soc Remote Sens 36:77–88

    Article  Google Scholar 

  • Fazal S (2001) The need for preserving farmland: a case study from a predominantly agrarian economy (India). Landsc Urban Plan 55:1–13

    Article  Google Scholar 

  • Fotheringham AS, Wong DW (1991) The modifiable areal unit problem in multivariate statistical analysis. Environ Plan A 23:1025–1044

    Article  Google Scholar 

  • Fotheringham AS, Brunsdon C, Charlton M (2003) Geographically weighted regression: the analysis of spatially varying relationships [Internet]. [place unknown]: John Wiley & Sons; [cited 2016 July 26]. Available from: https://books.google.com/books?hl=en&lr=&id=9DZgV1vXOuMC&oi=fnd&pg=PR7&dq=Geographically+weighted+regression:+Wiley+New+York+book&ots=64FJNgo9KG&sig=rvfajcybZupWNRMGTen6intGITc

  • Ganguly K, Kumar R, Reddy KM, Rao PJ, Saxena MR, Shankar GR (2016) Optimization of spatial statistical approaches to identify land use/land cover change hot spots of Pune region of Maharashtra using remote sensing and GIS techniques. Geocarto Int 0:1–20

    Google Scholar 

  • Gollini I, Lu B, Charlton M, Brunsdon C, Harris P (2013) GWmodel: an R package for exploring spatial heterogeneity using geographically weighted models. ArXiv Prepr ArXiv13060413 [Internet]. [cited 2016 July 26]. Available from: http://arxiv.org/abs/1306.0413

  • Hu Z, Lo CP (2007) Modeling urban growth in Atlanta using logistic regression. Comput Environ Urban Syst 31:667–688

    Article  Google Scholar 

  • Jantz CA, Goetz SJ, Shelley MK (2004) Using the SLEUTH urban growth model to simulate the impacts of future policy scenarios on urban land use in the Baltimore-Washington metropolitan area. Environ Plan B Plan Des 31:251–271

    Article  Google Scholar 

  • Jat MK, Garg PK, Khare D (2008) Monitoring and modelling of urban sprawl using remote sensing and GIS techniques. Int J Appl Earth Obs Geoinf 10:26–43

    Article  Google Scholar 

  • Kantakumar LN, Kumar S, Schneider K (2016) Spatiotemporal urban expansion in Pune metropolis, India using remote sensing. Habitat Int 51:11–22

    Article  Google Scholar 

  • Kowe P, Pedzisai E, Gumindoga W, Rwasoka DT (2015) An analysis of changes in the urban landscape composition and configuration in the Sancaktepe District of Istanbul Metropolitan City, Turkey using landscape metrics and satellite data. Geocarto Int 30:506–519

    Article  Google Scholar 

  • Lafazani P, Lagarias A (2016) Applying multiple and logistic regression models to investigate periurban processes in Thessaloniki, Greece. Geocarto Int 31:927–942

    Article  Google Scholar 

  • Li X, Zhou W, Ouyang Z (2013) Forty years of urban expansion in Beijing: what is the relative importance of physical, socioeconomic, and neighborhood factors? Appl Geogr 38:1–10

    Article  Google Scholar 

  • Linard C, Tatem AJ, Gilbert M (2013) Modelling spatial patterns of urban growth in Africa. Appl Geogr 44:23–32

    Article  Google Scholar 

  • Lu B, Harris P, Charlton M, Brunsdon C (2014) The GWmodel R package: further topics for exploring spatial heterogeneity using geographically weighted models. Geo-Spat Inf Sci 17:85–101

    Article  Google Scholar 

  • Luo J, Wei YD (2009) Modeling spatial variations of urban growth patterns in Chinese cities: the case of Nanjing. Landsc Urban Plan 91:51–64

    Article  Google Scholar 

  • Luo J, Yu D, Xin M (2008) Modeling urban growth using GIS and remote sensing. GISci Remote Sens 45:426–442

    Article  Google Scholar 

  • Moghadam HS, Helbich M (2013) Spatiotemporal urbanization processes in the megacity of Mumbai, India: a Markov chains-cellular automata urban growth model. Appl Geogr 40:140–149

    Article  Google Scholar 

  • Mondal B, Das DN, Dolui G (2015) Modeling spatial variation of explanatory factors of urban expansion of Kolkata: a geographically weighted regression approach. Model Earth Syst Environ 1:29

    Article  Google Scholar 

  • Mondal B, Das DN, Bhatta B (2016) Integrating cellular automata and Markov techniques to generate urban development potential surface: a study on Kolkata agglomeration. Geocarto Int 32:1–19

    Google Scholar 

  • Openshaw S (1983) The modifiable areal unit problem. GeoBooks, Norwich

    Google Scholar 

  • Openshaw S (1984) The modifiable areal unit problem. In: [place unknown]: Geo Abstracts University of East Anglia

    Google Scholar 

  • Pathirana A, Denekew HB, Veerbeek W, Zevenbergen C, Banda AT (2014) Impact of urban growth-driven landuse change on microclimate and extreme precipitation—a sensitivity study. Atmos Res 138:59–72

    Article  Google Scholar 

  • Pimpri-Chinchwad Municipal Corporation (2008) Comprehensive mobility plan (CMP) for PCMC. [place unknown]

    Google Scholar 

  • Pontius RG Jr, Millones M (2011) Death to Kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment. Int J Remote Sens 32:4407–4429

    Article  Google Scholar 

  • Pune Municipal Corporation (2008) Comprehensive mobility plan for Pune city. Pune

    Google Scholar 

  • Ramachandra TV, Setturu B, Aithal BA (2012) Per-urban to urban landscape patterns elucidation through spatial metrics. Int J Eng Res Dev 2(12):58–81

    Google Scholar 

  • Schneider A, Woodcock CE (2008) Compact, dispersed, fragmented, extensive? A comparison of urban growth in twenty-five global cities using remotely sensed data, pattern metrics and census information. Urban Stud 45:659–692

    Article  Google Scholar 

  • Shafizadeh-Moghadam H, Helbich M (2015) Spatiotemporal variability of urban growth factors: a global and local perspective on the megacity of Mumbai. Int J Appl Earth Obs Geoinf 35:187–198

    Article  Google Scholar 

  • Sudhira HS, Ramachandra TV, Jagadish KS (2004) Urban sprawl: metrics, dynamics and modelling using GIS. Int J Appl Earth Obs Geoinf 5:29–39

    Article  Google Scholar 

  • Taubenböck H, Wegmann M, Roth A, Mehl H, Dech S (2009) Urbanization in India–spatiotemporal analysis using remote sensing data. Comput Environ Urban Syst 33:179–188

    Article  Google Scholar 

  • Triantakonstantis D, Stathakis D (2015) Examining urban sprawl in Europe using spatial metrics. Geocarto Int 30:1092–1112

    Article  Google Scholar 

  • Wheeler D, Tiefelsdorf M (2005) Multicollinearity and correlation among local regression coefficients in geographically weighted regression. J Geogr Syst 7:161–187

    Article  Google Scholar 

  • Yu D-L (2006) Spatially varying development mechanisms in the Greater Beijing Area: a geographically weighted regression investigation. Ann Reg Sci 40:173–190

    Article  Google Scholar 

  • Zeng C, Zhang M, Cui J, He S (2015) Monitoring and modeling urban expansion—a spatially explicit and multi-scale perspective. Cities 43:92–103

    Article  Google Scholar 

  • Zhang Q, Seto KC (2011) Mapping urbanization dynamics at regional and global scales using multi-temporal DMSP/OLS nighttime light data. Remote Sens Environ 115:2320–2329

    Article  Google Scholar 

  • Zhang Z, Su S, Xiao R, Jiang D, Wu J (2013) Identifying determinants of urban growth from a multi-scale perspective: a case study of the urban agglomeration around Hangzhou Bay, China. Appl Geogr 45:193–202

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pandey, B., Joshi, P.K., Singh, T.P., Joshi, A. (2019). Modelling Spatial Patterns of Urban Growth in Pune Metropolitan Region, India. In: Kumar, P., Rani, M., Chandra Pandey , P., Sajjad, H., Chaudhary, B. (eds) Applications and Challenges of Geospatial Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-99882-4_11

Download citation

Publish with us

Policies and ethics